内容简介:
基于机器学习的量化投资建模是金融科技和量化投资研究的新热点。以深度强化学习为标志的机器学习取得突破性进展,激起了金融投资领域开展人工智能与机器学习研究的热潮。如何将前沿的机器学习方法深度应用于金融数据建模与量化投资研究中,进而提出新的主动型量化投资模型与方法,是一项极具吸引力和挑战性的研究。
本书从机器学习与金融投资交叉的视角,运用人工智能与机器学习领域的多种前沿方法,深入研究量化投资研究与实务中涉及到的重要建模问题,主要包括股票价格与市场指数的预测建模、行业板块指数互动关系建模、量化选股与择时策略建模以及高频算法交易策略设计等方面。