编辑推荐:
在现今的互联网公司中,产品线绵延复杂,安全防御体系无时无刻不在应对新的挑战。哪怕是拥有丰富工作经验的安全从业者,在面对层出不穷的攻手段和海量日志数据时也会望洋兴叹。机器学习、深度学习是这些问题天然契合的解决方案,在数据量以指数级不断增长的未来,甚至有可能是唯壹的出路。当AI遇到安全时,如何快速化,本书给出了实战方案。本书作者是百度安全专家,他用风趣幽默的语言、深浅出的方法诠释了卷积神经网络和循环神经网络这两大深度学习算法,及其在Web安全领域中的实际应用,非常实用,包括所有案例源代码,以及公的测试数据,可极大地降低学习成本,使读者快速上手实践。
内容简介:
在现今的互联网公司中产品线绵延复杂,安全防御体系无时无刻不在应对新的挑战。哪怕是拥有丰富工作经验的安全从业者,在面对层出不穷的攻手段和海量日志数据时也会望洋兴叹。深度学习在数据量以指数级不断增长的未来有可能是唯壹的出路。本书首先介绍如何造自己的深度学习工具箱,包括TensorFlow、TFLearn等深度学习库的安装以及使用方法。着介绍卷积神经网络和循环神经网络这两大深度学习算法的基础知识。特别着重介绍在生产环境搭建深度学习平台需要使用的源组件,包括Logstash、Kafka、Storm、Spark等。随后讲解了使用机器学习技术解决实际安全问题的案例,本书针对每一个算法都给出了具体案例,理论结合实际,讲解清晰,文笔幽默,适合有信息安全基础知识的网络发与运维技术人员参考。
作者简介:
刘焱 百度安全技术经理,Web防护产品线负责人。全程参与了百度企业安全建设,负责百度安全对外的Web安全产品,包括防DDoS、Web应用防火墙、Web威胁感知、服务器安全防护产品等。研究兴趣包括机器学习、Web安全、僵尸网络、威胁情报等。还建立了微信公众号:“兜哥带你学安全”,发布了大量信息安全技术知识。