编辑推荐:
1. 畅销书《Python神经网络编程》作者*力作;2. 本书以直白、简短的方式介绍了生成对抗网络,指导读者按部就班地编写生成对抗网络;3. 本书介绍了计算平衡GAN的理想损失值、卷积的工作原理等被很多机器学习相关教程忽略的主题,对训练GAN的主要挑战行了讨论,十分具有启发性;4. 全彩印刷,配套示例代码,图文并茂,易懂实用。我很喜欢将这本书作为周日早晨的读物。更让我激动的是,本书展示了实现各种示例的细节。我会向任何想始学习生成对抗网络的人推荐这本书。--JV Amazon读者作者轻松友好的写作风格让人感觉他在和你一起旅行。当我听说作者要出版这本书时,我迫不及待地想阅读这本书。我很心,这本书和他的*本书《Python神经网络编程》一样容易阅读和理解。你将再一次踏上一段轻松的旅程,我愿意向所有人推荐它。--Mairiwr Amazon读者
内容简介:
生成对抗网络(Generative Adversarial Network,GAN)是神经网络领域的新星,被誉为“机器学习领域近20年来*酷的想法”。本书以直白、简短的方式向读者介绍了生成对抗网络,并且教读者如何使用PyTorch按部就班地编写生成对抗网络。全书共3章和5个附录,分别介绍了PyTorch基础知识,用PyTorch发神经网络,改良神经网络以提升效果,引CUDA和GPU以加速GAN训练,以及生成高质量图像的卷积GAN、条件式GAN等话题。附录部分介绍了在很多机器学习相关教程中被忽略的主题,包括计算平衡GAN的理想损失值、概率分布和采样,以及卷积如何工作,还简单解释了为什么梯度下降不适用于对抗式机器学习。本书适合想初步了解GAN以及其工作原理的读者,也适合想要学习如何构建GAN的机器学习从业人员。对于正在学习机器学习相关课程的学生,本书可以帮助读者快速门,为后续的学习好基础。
作者简介:
塔里克·拉希德(Tariq Rashid),拥有物理学学士学位、机器学习和数据挖掘硕士学位。他常年活跃于伦敦的技术圈子,领导并组织伦敦Python聚会小组(近3000名成员)。 译者简介: 韩江雷,新加坡南洋理工大学计算机专业博士,思爱普公司(新加坡)数据科学家。他的研究兴趣有自然语言处理、文本数据分析、数据挖掘等项目的落地及运维。