内容简介:
随着物联网、云计算、大数据与人工智能等技术的蓬勃发展,计算服务逐渐从计算密集型向数据密集型(Data Intensive)转变。高性能、高通量的数据服务关键技术成为智慧城市、智能制造、智慧农业等国家重大需求解决方案的核心基础。并行与分布式数据处理的概念启发于上世纪80年代,源自讨论在内存及二级存储极为有限的条件下如何跨越“内存墙”,完成计算任务的优化技术。而今,互联网与私有网络数据指数级增长、数据服务的事务性需求复杂多变、跨地域数据同步需求动态不统一、如何应对当前及未来大数据服务及其上的人工智能计算对并行与分布式数据服务提出了新的问题与挑战。本书从并行与分布式数据服务的基础理论、事务模型、数据处理语言等基础内容,并进一步讨论分布式数据一致性模型及全观性的数据处理架构方面的先进及实用的研究及系统软件相关知识,,对分布式数据服务的其他研究也进行了概述,并对其未来发展方向进行展望。