您好,欢迎来到宝阳悦读网
VIP购买
分类页面广告
联邦学习:原理与算法
作者: 王健宗
格式:
mobi/epub/pdf/awz3
浏览量:
58次
扫描关注公众号
扫码关注公众号

温馨提示:书籍来自网络收集,版权归原作者所有,仅做学习试读,下载后请24小时内删除,侵权删(联系:1401211620@qq.com)

所属分类:
点击下载
收藏该图书
图书中部
图书详情
内容简介:
数据孤岛问题已经成为制约人工智能发展的主要阻碍。在此背景下, 联邦学习(Federated Learning) 作为一种新兴的机器学习技术范式, 凭借其突出的隐私保护能力,展示出在诸多业务场景中的应用价值。 本书从联邦学习的基础知识出发, 深入浅出地介绍了中央服务器优化和联邦机器学习的算法体系, 详细阐述了联邦学习中涉及的加密通信模块的相关知识, 以定性和定量的双视角建立了联邦学习服务质量的评估维度、理论体系, 还延伸介绍了提升联邦学习服务质量的方法, 并对联邦学习的研究趋势进行了深入探讨与分析, 可以对设计和选择算法提供工具式的参考和帮助。 本书是高校、科研院所和业界相关学者研究联邦学习技术的理想读本, 也适合大数据、人工智能行业的从业者和感兴趣的读者参考。
详情数据包
0.046358s